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Abstract 

Despite their effectiveness as a crucial component of combination chemotherapy against solid tumors, platinum compounds 

have many serious side effects that limit their use. This review article focuses on the various toxic effects of platinum 

compounds in cancer patients and the mechanisms of associated toxicity. It also describes the future directions for developing 

novel platinum-based compounds using both animal and human studies. A list of publications was included after searching the 

Google and Google Scholar databases, PubMed, and scientific journals between 2005-2020. Platinum-based medicines, as soft 

nucleophiles, can freely bind to proteins containing thiol groups like glutathione and DNA in normal and malignant cells, 

particularly those in fast-growing tissues, causing a variety of dangerous side effects. Fast-growing tissues such as the mucous 

membranes of the mouth, throat, stomach, and intestines, bone marrow, and hair follicles can be damaged by cytotoxic 

chemotherapy, resulting in gastrointestinal toxicities, myelosuppression, and hair loss. Platinum compounds also cause 

nephrotoxicity and hepatotoxicity, which are well-known side effects. Current platinum-based chemotherapy treatments have 

been restricted in the last decade, prompting a search for novel platinum-based medications with mechanisms of action distinct 

from those of existing chemotherapeutics. 
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 الآليه الجزيئيه للتسمم :الجانبيه السامه للمركبات البلاتينيه الاثار

 الخلاصة

 انها تمتلك العديد من الآثار بالرغم من فعالية المركبات البلاتينيه كمكون مهم من مكونات البروتوكولات الكيميائيه لعلاج العديد من الاورام السرطانيه الصلبه، الا

، وذلك استنادا الى الدراسات التي امركبات البلاتينيه وآليتهلاستعمالاتها. الهدف الاساسي من هذه المقاله هو التركيز على التاثيرات السامه لالجانبيه التي تحد من 

ع. تركز هذه المقاله ، والمجلات العلميه التي لها صله بالموضو ,Google ،Google Schoolar  ،Pub Medاجريت على الحيوانات والانسان. تم البحث في مواقع 

. لأنها ماده لينه محبه للنواة، فأن مركبات البلاتين تستطيع الارتباط بالبروتينات عن طريق مجموعة الثايول الموجوده ٢٠٢٠- ٢٠٠٥على الابحاث التي نشرت بين 

سرطانيه فحسب وأنما ترتبط ايضا بالخلايا الطبيعية، خاصة بالخلايا في الاحماض الامينيه اضافة الى الحمض النووي. لايقتصر ارتباط الأدويه البلاتينيه بالخلايا ال

، نخاع العظم ، وخصلات الشعر من التي تمتاز بسرعة النمو متسببة في العديد من الآثار الجانبيه. تعتبر الأغشيه المخاطيه المتواجده في الفم، العنق، المعده، والأمعاء

الكيميائيه مما ينتج عنه تأثيرات جانبيه سامه في الجهاز الهضمي، كبت نقي العظم، وتساقط الشعر على التوالي. بالأضافة الى ذلك الانسجه التي غالبا ما تتأثر بالأدويه 

ومشتقاتها   cisplatin  ه حاليا مثلتعد التأثيرات السامه التي تسببها هذه المركبات على الكليتين والكبد من التأثيرات الشائعه. أستعمالات الأدويه البلاتينيه المتواجد

في آليه عملها. هذه المركبات شهدت انحسارا في العقود الأخيره، مما أدى للحاجة ألى مركبات بلاتينيه اخرى مستحدثه تختلف عن المركبات الابلاتينيه الموجودة حاليا 

 في الوقت الحاضر.البلاتينيه المستحدثه استطاعت ان تحل بعض من المشاكل المرتبطه بالمركبات المتواجده 
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INTRODUCTION 
 

Platinum (Pt) drugs are one of the most effective cytotoxic 

agents accessible to oncologists. Although they include a 

wide range of compounds, cisplatin and the newer 

derivatives such as carboplatin and oxaliplatin are the most 

widely used [1]. Heptaplatin (Korea), Lobaplatin (China), 

Miriplatin (Japan), and Nedaplatin (USA) are four 

platinum-based drugs that have received regulatory 

approval in their respective countries [2]. Despite their 

effectiveness as critical components of combination 

chemotherapy regimens against a wide range of solid 

tumors (lung, testes, ovary, cervix uteri, head and neck, 

colon, and rectum), platinum compounds have a variety of 

significant adverse effects that restrict their use [3]. 

Following intravenous administration, platinum drugs 

usually bind to serum proteins, especially human serum 

albumin [2]. They penetrate cells using various methods; 

the most notable are copper transporters, specifically high-

affinity copper transporter-1 [4]. Inside the cells, the drug 

is equated, and its labile groups are lost due to the low salt 

concentration (chlorides or carboxylate-based ligands). 

Then, it becomes highly reactive; therefore, it can bind to 

a wide range of intracellular biomolecules [5]. As a soft 

nucleophile, platinum-based drugs can freely bind to 

peptides and proteins with sulfur residues of thiol-

containing amino acids such as cysteine, methionine, and, 

in particular, with the antioxidant peptide glutathione. 

However, platinum compounds' principal target is nuclear 

DNA [5]. They bind primarily to the N7 position of 

guanine, but they also bind to adenosine residues, causing 

DNA to unwind and twist [5]. As a result, apoptosis is 

triggered when DNA transcription and replication are 

disrupted [6]. This binding is not restricted to cancerous 

cells but also to normal cells, especially those of fast-

growing tissues. Due to their poor selectivity, platinum-

based drugs, like other cytotoxic drugs, have many serious 

adverse effects [7]. The mucous membranes of the mouth, 

neck, intestines, and stomach are among the fast-growing 

tissues affected by cytotoxic agents, resulting in 

gastrointestinal toxicities. These drugs affect bone marrow 

and hair, leading to myelosuppression and loss of hair, 

respectively. Hair loss or alopecia occurs in eyebrows, 

facial and body hair, and hair follicles of the ear, resulting 

in ototoxicity. Nephrotoxicity and hepatotoxicity are well-

known side effects of platinum-based compounds. Kidney 

damage occurs due to drug excretion in the urine, and liver 

toxicity occurs due to the body's attempt to metabolize the 

drug in the liver, allowing exposure of both organs to the 

drug [7]. It has been found that there is a clear relationship 

between Platinum-based drugs' toxicity and their degree of 

reactivity determined by the lability of their leaving 

groups. The more labile the group(s), the more reactive the 

complex is and the more side effects it causes [7]. For each 

drug, there is a different dose-limiting toxicity (DLT), 

characterized as a medication side effect that is severe 

enough to prohibit the drug dose or level of treatment from 

being increased. For example, nephrotoxicity, 

myelosuppression, and neurotoxicity are DLTs of cisplatin, 

carboplatin, and oxaliplatin, respectively [7]. This review 

article will primarily focus on the various toxic effects of 

platinum-based compounds on cancer patients and the 

mechanisms of toxicity associated with each toxicity by 

including animal and human studies as well as some future 

directions for developing alternative novel platinum 

compounds. It primarily focuses on trials conducted 

between the years 2005 and 2020. 

 

METHODS 
 

We performed a precise article review that focuses on the 

toxic effects of platinum-based compounds and their 

mechanism of toxicity. We searched the Google and 

Google scholar databases, PubMed, and scientific journals. 

A reference list of relevant articles was included. Many 

keywords were used, including platinum-based 

compounds, Platinum toxicity, neurotoxicity of platinum-

based compounds, assessment of platinum-induced 

neurotoxicity, cardiotoxicity of platinum-based 

compounds, platinum nephrotoxicity, hematological 

adverse effects of platinum-based drugs, and novel 

platinum-based compounds. The search was limited to the 

period from 2010 to 2020 and from many articles and 

studies. Twenty review articles and 45 original articles 

were selected for further analysis, depending on the 

inclusion and exclusion criteria of the review article. 

Original articles, animal studies, excremental studies, and 

clinical trials were included. 

 

Determining the intensity of a platinum-based drug's 

adverse effects 
 

The scale developed by the National Cancer Institute (NCI) 

of the United States, which is known as the Common 

Terminology Criteria for Adverse Events scale, is widely 

used for scoring the intensity of adverse reactions of 

platinum-based drugs as follow: Grade 1 is described as 

mild in Version 4 of the guidelines, and it refers to 

asymptomatic or mild symptoms for which intervention is 

not required. Grade 2: When limited, local, or non-invasive 

intervention is required, or when side effects restrict age-

appropriate functional daily activity, it is classified as 

moderate. Grade 3: These are medically relevant side 

effects that are not instantly life-threatening but require 

acute or prolonged hospitalization and are classified as 

severe, or Grade 3. Grade 4 refers to a life-threatening side 

effect that necessitates immediate medical attention. Grade 

5 refers to death as an outcome of the side effects [8]. 
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RESULTS AND DISCUSSION 

 

Different side effects are associated with the three platinum 

products, which can be divided into seven categories as 

follows: 

 

NEUROTOXICITY 

 

Neurotoxicity is a common side effect of cisplatin. It 

frequently occurs during the use of oxaliplatin. About 60 

to 95% of patients who receive oxaliplatin develop 

neurotoxicity. The incidence of chronic peripheral sensory 

neuropathy (PSN) increases when patients are 

administered cumulative doses of cisplatin or oxaliplatin 

that exceed 500 mg/m2 and 750 mg/m2, respectively [9]. 

Many different mechanisms are suggested for the Pt-based 

chemotherapy-induced peripheral neuropathy (CIPN), 

which includes the following: 

 

1. Nuclear DNA damage  
 

Both DNA adducts (DNA-protein cross-links and intra-

strand and inter-strand DNA) are formed upon binding of 

PT compounds with DNA. They inhibit DNA base 

excision repair and transcription [10,11]. These alterations 

in cell functions are critical for the therapeutic efficacy of 

Pt-based drugs. However, they also harm non-mitotic cells 

like dorsal root ganglion (DRG) neurons, which require a 

high metabolism as well as a high level of protein and 

organelle production to maintain long axons. They 

preferentially accumulated in DRG neurons due to the 

presence of a fenestrated capillary network. In addition to 

the lack of a blood-brain barrier that allowed easy access 

to sensory neurons [12]. As a result, DRG-induced DNA 

damage causes neuronal shrinkage in sensory neurons, 

which is the most critical step in neurotoxicity 

development [11]. Copper transporter-1 (CTR1) and 

organic cation transporter-2 are two separate forms of 

neuronal membrane transporters that aid in the uptake of 

Pt-based medicines into DRG neurons (OCT2). Therefore, 

upregulation of these transporters inside neurons leads to 

the progression or advancement of neurotoxicity [13]. A 

link between DNA adduct levels and the severity of 

neurotoxicity has been discovered. An in vitro study 

showed that the amounts of Platinum-DNA adducts created 

by cisplatin were three times higher than those formed by 

equimolar oxaliplatin doses and killed considerably more 

neuronal cells than oxaliplatin [14]. Platinum-induced 

DNA damage also causes apoptosis and neuron loss in 

DRG neurons, according to several in-vivo and in-vitro 

preclinical studies. Cisplatin causes p53 activation, bax 

translocation, mitochondrial cytochrome c release, and 

caspase-3 and caspase-9 activation in neural cells. Among 

other things, DRG neurons attempt to reenter the cell cycle 

again from the G0 phase after being exposed to cisplatin; 

this event can be a source of neuronal damage [15,16]. 

 

2. Mitochondrial DNA damage 

  

It was proven that cisplatin binds to mitochondrial DNA 

with the same affinity as nuclear DNA. It produces 

suppression of the transcriptional activity of the 

mitochondrial DNA, induction of morphological 

alterations in the mitochondrial DNA, triggering electron 

transport chain destruction, decreasing adenosine 

triphosphate (ATP) production, energy loss, as well as a 

rise in reactive oxygen species production [17]. 

Consequently, these events will perturb mitochondrial 

permeability transfer pores, depolarization of the 

mitochondrial membrane, calcium accumulation inside the 

cell, and apoptotic protein expression [17]. Cisplatin 

affects mitochondrial fusion and fission protein expression, 

which govern the structure, the size, and the number of 

mitochondria [18]. Based on results obtained from 

cisplatin-treated mice's DRG and tibial nerves, Bobylev et 

al. discovered mitochondrial swelling and death due to a 

substantial drop in mitofusin-2 expression levels in 

mitochondrial fusion protein [18]. Furthermore, other 

studies have proved that cisplatin affects the apoptotic 

mitochondrial pathway via cystine c-release and caspase 

activation. In particular, they discovered a substantial 

increase in caspase-3 levels, an apoptotic marker, in 

cultures of DRG neurons incubated with cisplatin 

compared to the untreated cultures using an 

immunoblotting technique [15]. Cullen and colleagues 

hypothesized in 2007 that mitochondrial permeability 

transition pore (mPTP) modification could boost cystine c-

release, specifically through interactions between PT 

adducts and VDAC (a structural element of mPTP) [19]. 

Recently, it has been reported that oxaliplatin forms fewer 

DNA adducts than cisplatin. It maintains cytotoxicity via 

inducing immunogenic cell death. Based on recent reports, 

it promotes T cell-dependent immune responses and 

disrupts ribosome biogenesis [20]. 

 

3. Oxidative stress 
 

Reduced antioxidant defenses and homeostatic failure can 

cause oxidative stress and lead to neurodegeneration [17]. 

Because of their high phospholipid content and inadequate 

cellular antioxidant defenses, mammalian nerves with long 

axons are particularly sensitive to ROS. Furthermore, the 

axoplasm is densely packed with mitochondria, and 

multiple investigations have suggested that axonal 

cytotoxicity contributes to CIPN [21]. 
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4. Voltage-gated ion channel dysfunction 

  

The dysfunction of sodium and potassium channels as well 

as transient receptor potential channels (TRP channels) 

was found to be associated with the development of CIPN. 

Platinum-based compounds significantly delay the 

inactivation of sensory neurons and reduce the peak Na+ 

current, resulting in a longer relative refractory time. The 

metabolite oxalate (diaminocyclohexane-platinum-C2O4) 

of oxaliplatin can also affect Na+ channels indirectly by 

chelating extracellular calcium ions. As a result, sensory 

neurons become hyperexcitable, leading to spontaneous 

ectopic discharges [22]. Oxaliplatin's effect on voltage-

gated Na+ channels is unique, resulting in cold-aggravated 

peripheral neuropathic pain [23]. Oxaliplatin was also 

discovered to induce action potential broadening and 

repeated firing, implying an inhibitory action on neuronal 

fast and slow potassium channels. Sittl et al. found that 

Flupirtine can minimize oxaliplatin-triggered peripheral 

nerve hyperexcitability by increasing axonal potassium 

conductance [24]. Unlike oxaliplatin, cisplatin does not 

have a significant effect on neuronal sodium or potassium 

channel activity. In an experimental animal study, 

treatment with cisplatin increases the flux of calcium ions 

in rats' DRG neurons. The upregulation of N-type calcium 

channels was the primary cause of increased intracellular 

calcium levels as well as induced Caspases-3 and apoptosis 

activity [25]. 

 

5. Neuro inflammation 

 

Neuroinflammation is a process characterized by immune 

cell infiltration and activation as well as the production of 

cytokines and chemokines by peripheral and central glial 

cells. It is considered a key mechanism leading to CIPN 

complexity. The relationship between oxaliplatin-induced 

neuropathic pain and glial activation was proposed by 

Mannelli et al, who discovered a temporary stimulation of 

the spinal cord, microglia and astrocytes, and supraspinal 

areas associated with pain regulation, as well as a decrease 

in mechanical and thermal pain thresholds, in a rat model 

of oxaliplatin-induced peripheral neuropathy [26]. It has 

also been found that CIPN is linked to an increase in pro-

inflammatory cytokines (tumor necrosis factor, interleukin 

(IL)-1, and IL-6) and a reduction in anti-inflammatory 

cytokines in the DRG and spinal cord [27]. 

 

6. Dysregulation of intracellular signaling and receptor 

downregulation 

 

Via a variety of intracellular signaling pathways, PT causes 

uncontrolled proteolysis. Intracellular Ca2+ plays a 

significant role in cellular homeostasis as a second 

messenger, and its disruption is also linked to CIPN. It has 

been found that Ca2+ concentration fluctuations can affect 

membrane excitability, neurotransmitter release, and gene 

expression [28]. Activation of other second messenger 

signaling molecules, like protein kinases and caspases, 

may also cause axonal degeneration [29]. In rats, the alpha-

7-nicotinic acetylcholine receptor (nAChR) was 

suppressed in the sciatic nerve, DRG, and the spinal cord 

after treatment with 2.4 mg/kg/day intraperitoneal 

oxaliplatin for a 3-week duration [30]. 

 

NEPHROTOXICITY 

 

Nephrotoxicity is a broad concept that encompasses 

numerous distinct side effects related to the kidneys' main 

functions of filtration, reabsorption, and excretion. 

Therefore, monitoring is needed before and after treatment 

with each of the three platinum-based drugs. It involves 

measurements of creatinine clearance and other 

biochemical markers. Although nephrotoxicity can occur 

with the three Platinum-based drugs, it is most commonly 

associated with cisplatin treatment [31]. Acute kidney 

injury and hypomagnesemia due to the failure of the kidney 

to reabsorb magnesium affect up to 25% and 90% of 

cisplatin-treated patients, respectively. They are the two 

most common nephrotoxic adverse effects of cisplatin [32]. 

The risk of developing nephrotoxicity increases due to the 

presence of hypertension, pre-existing renal dysfunction, 

prior kidney removal, female gender, older age, and 

cigarette smoking [33]. Several medications like 

nonsteroidal anti-inflammatory drugs, aminoglycosides, 

cephalosporin antibiotics, ifosfamide, and methotrexate 

also increase patient risk when co-administrated with 

platinum compounds [32]. The mechanisms underlying 

cisplatin-induced nephrotoxicity are complicated, 

involving various stepwise processes. The most important 

one includes glutathione conjugate formation in the 

bloodstream (possibly mediated by glutathione-S-

transferase), which would initiate metabolic activation of 

cisplatin inside the kidney, resulting in the production of 

more reactive toxic metabolites [33]. Glutathione-

conjugates are cleaved into cysteinyl-glycine-conjugates 

when they move through the kidney by gamma-glutamyl 

trans-peptidase (GGT), which is found on the surface of the 

proximal tubule. Aminopeptidases expressed on the 

surface of the proximal tubule cells metabolize the 

cysteinyl-glycine-conjugates to cysteine-conjugates 

transferred to the proximal tubule cells. They undergo 

further biotransformation to yield highly reactive thiols by 

cysteine-S-conjugate beta-lyase [33]. These positively 

charged metabolites will then accumulate predominantly in 

the oppositely charged mitochondria. Therefore, both 

mitochondrial density and mitochondrial membrane 

potential appear to be associated with cisplatin cell 

susceptibility. Because the renal proximal tubule contains 
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the highest number of mitochondria within the kidney, it is 

highly sensitive to cisplatin toxicity [33,34]. Several 

studies have proved that mitochondrial DNA or other 

mitochondrial targets can play a role in mediating cisplatin-

induced cell death rather than nuclear DNA damage [34]. 

 

MYELOSUPPRESSION 

  

Myelosuppression describes a disorder in which the 

development of all blood cells in the bone marrow is 

disrupted, resulting in low levels of white and red blood 

cells, as well as platelets [35]. Although all platinum-based 

compounds cause hematological toxicity, carboplatin-

induced myelosuppression is the most common. Kidney 

function, age, and race are risk factors for hematological 

toxicities. It has been found that the severity of the side 

effects is directly related to the medication doses. 

Therefore, patients taking a platinum-based drug should be 

monitored for WBC, platelets, and absolute neutrophil 

counts (ANC) [35]. The occurrence of febrile neutropenia 

(fever with a temp. > or = 38 °C) is of critical significance 

to patients, since 5–7% of those who experience this side 

effect die during hospitalization [36]. 

 

OTOTOXICITY 

 

The most common ototoxicity for platinum-based drugs is 

persistent deafness in both ears. Hearing loss prevalence 

varies greatly, ranging from 4 to 90% depending on the 

medication dosage and the patient's age, with higher 

frequencies occurring with cisplatin [37]. Other side effects 

may include otalgia (ear pain), tinnitus, and vestibular 

alterations. Platinum-induced ototoxicity is caused by 

damage of the inner ear through a variety of mechanisms. 

One mechanism to consider is the induction of p53, cell 

cycle arrest, and apoptosis by the covalent binding of 

cisplatin with the guanine base of DNA. It results in the 

formation of inter and intrastrand chain cross-linking [38, 

39]. Additionally, cisplatin produces ROS that induces 

lipid peroxidation and downregulates essential antioxidant 

enzymes such as glutathione reductase, glutathione 

peroxidase, catalase, and superoxide dismutase. It also 

increases apoptosis when accumulated in cochlear tissue 

[38]. Another possible ototoxicity mechanism is thought to 

be caused by the medication stimulating large conductance 

potassium channels, which causes follicle death [38]. 

Furthermore, the inflammatory pathway was linked to 

cisplatin-induced ototoxicity [40]. 

 

CARDIOTOXICITY 

 

Compared to cisplatin, oxaliplatin and carboplatin have 

fewer clinical records of cardiotoxicity. Cisplatin produced 

the most prominent cardiotoxic side effect of tachycardia, 

which was the most prominent cardiotoxic side effect of 

cisplatin. It could appear minutes, hours, or even days after 

treatment, with the majority occurring silently and, in some 

cases, becoming fatal. Other cardiotoxic effects include 

symptomatic and asymptomatic arrhythmias, cardiac 

ischemia, diastolic disturbances, myocardial infarction, 

angina, pericarditis, thrombosis, and chronic heart failure 

[41]. While cardiotoxicity was not reported as a prominent 

side effect of platinum-based drugs. During the last ten 

years, there has been an increase in clinical studies 

documenting a broad range of cardiotoxic events during or 

shortly after cisplatin infusion [42]. Platinum-based 

medications, unlike some of the other chemotherapeutic 

medications, are not frequently prescribed with cardiac 

monitoring. It may contribute to underestimating their 

short and long-term cardiotoxic effects, especially when 

symptoms are silent [41]. Although the cause of cisplatin-

induced cardiotoxicity is unknown, it may occur due to 

poor magnesium reabsorption, or to its effect on the SA 

node [43]. Furthermore, there is some evidence that the 

cardiotoxicity of cisplatin is linked to a direct ROS attack 

on the heart [42]. The oxidative stress caused due to 

cisplatin is evidenced by the observed decrease in heart 

GSH levels, and an increase in MDA levels, as well as a 

decrease in oxidative enzyme activities. The resultant ROS 

can attack the membrane lipids of cardiac cells, resulting in 

lipid peroxidation with consequent reversible changes in 

membrane structures and functions, as well as cardiac 

enzyme leakage [44,45]. 

 

HEPATOTOXICITY 

 

The incidence of hepatotoxicity differs for each platinum 

compound. It has been found to range between 10% to 50% 

for oxaliplatin [46]. Both oxaliplatin and cisplatin are 

known for their ability to damage the liver sinusoids, 

resulting in sinusoidal dilation and obstruction, which 

subsequently leads to a decline in liver function and the 

development of symptoms like abdominal pain and 

swelling [47]. Sinusoidal damage could also result in 

nodular hyperplasia in the liver [48]. They cause 

hepatotoxicity by producing ROS in the mitochondria of 

sinusoidal epithelial cells. These ROS cause a rise in 

cytokine levels in the body, making healthy liver cells more 

susceptible to apoptosis and other forms of cell death [49]. 

Direct drug action on CYP450 enzymes, especially 

CYP2E1 and CYP4A11 enzymes, and the subsequent 

development of ROS, have also been linked to the level of 

hepatotoxicity in several studies [50]. 

 

GASTROINTESTINAL TOXICITY 

 

Emetic symptoms such as nausea, vomiting, and dyspepsia 

are the most common gastrointestinal side effects of 
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platinum drugs [51]. Many patients have insufficient food 

consumption, which can result in cachexia (weight loss), as 

well as some patients receiving platinum treatment can 

experience anorexia [52]. Cisplatin is a highly emetogenic 

medication with a high risk of nausea and vomiting in up 

to 90% of patients. Additionally, carboplatin and 

oxaliplatin are considered to be moderate-risk medications, 

with nausea and vomiting rates ranging from 30% to 90%. 

After invading the GIT cells, platinum-based drugs 

released 5-HT, which is responsible for the majority of 

chemotherapy-induced peripheral neuropathy 

(CINV).When 5-HT is released, it binds to serotonin 

receptors, especially 5-HT3 receptors, in the peripheral and 

central nervous systems, causing CINV [53,54]. The 

mechanisms associated with the development of cachexia 

in patients treated with cisplatin are unknown; but, a 

decrease in the secretion of the appetite-stimulating 

hormone ghrelin has been suggested to play a role, 

according to results obtained from an animal study 

performed on fasted and cisplatin-treated rats [55]. Over 

the last six years, there have been significant advancements 

in novel platinum (II) and platinum (IV)-based complexes. 

They include ligands that act on specific cellular targets 

within cancer cells (for example, mitochondria) to ensure 

selectivity [56], overexpressed receptors such as integrin 

[57], biotin [58], estrogen [59], folate and epidermal 

growth factor receptors, proteins such as tubulin [60], and 

enzymes that aid in cancer cell growth [61].As a result, 

platinum compounds of this kind have shown important 

anticancer activity. 

 

Conclusion 

 

The platinum compounds cisplatin, carboplatin, and 

oxaliplatin, in particular, play an important role in 

oncology and have helped to improve the prognosis of 

patients with cancer. Although they are increasingly used 

worldwide, their effectiveness is related to the amount and 

nature of their side effects. That could lead to dose 

reductions and poor patient quality of life. A little research 

was done to investigate the causes that make some patients 

more vulnerable to platinum side effects. Based on these 

factors and due to the development of drug resistance, 

platinum-based chemotherapy has been restricted in the 

last decade. It has sparked a quest for new platinum-based 

drugs that differ from existing chemotherapeutics in terms 

of their mechanism of action. Newer platinum-based 

compounds solve some of these problems. 
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